Plan for Water

• Data insights

Photo: NID

Sierra Nevada Mountain Precipitation & Snowpack Trends

yubanet.com

Extreme Variability in the West

COEFFICIENT OF VARIATION OF WATER-YR PRECIPITATION

eville Dam

Source: CA DWR Photo taken April 9, 2017. Snowpack around a home in Soda Springs, California.

Ę

Long-Term Trends?

Annual Precipitation

Lower Granite Dam

Looking back in time

Looking Back 1100 Years...

Sacramento River Reconstructed Annual Flow Volume

Climates Change.

That's What Climates Do.

Messing with Mother Nature!

Global temperature change (1850-2020)

REAL

Sacramento River Basin Precipitation

April 1 Snowpack

Source: CA DWR Phillips Station on April 1, 2021

California Cooperative Snow Surveys

Source: CA DWR Phillips Station taken January 30, 2020.

April 1 Snow Water Equivalent Trend

April 1 Snow Water Equivalent Trend

Elevation (m)

Sacramento River Basin April 1 Snow Water Equivalent Trend

Summary of Precipitation and April 1 SWE Changes

Basin	April 1 SWE Change (in/60 years)	Precipitation Change (in/60 years)	
Sacramento River	-5.0	+4.2	

Sacramento River April - July Runoff

Snowpack Region

Volume Comparison

Nevada County April 1 Snowpack Change \rightarrow -42,600 ac-ft

Van Giesen Dam, on Combie Reservoir

Planning Implications

Consider Bigger swings

Faster transitions

Discussion

Source: CA DWR Phillips Station. Photo taken February 27, 2020.

Source: CA DWR Phillips Station taken February 27, 2020

Improved Reservoir Management

Photo: D. Curtis Folsom Dam February 28, 2019

References

- Dettinger, Michael & Ralph, Fred & Das, Tapash & Neiman, Paul & Cayan, Daniel. (2011). Atmospheric Rivers, Floods and the Water Resources of California. Water. 3. 10.3390/w3020445.
- California Department of Water Resources. (2019). Latest Snow Survey Finds Water-Rich Snowpack. Retrieved from https://water.ca.gov/News/News-Releases/2019/February/Latest-Snow-Survey-Finds-Water-Rich-Snowpack#:~:text=Snowpack%20is%20an%20important%20factor,in%20the%20summer%20and%20fall.
- California Department of Water Resources. (2020). California Hydroclimate Report, Water Year 2019.
- Kapnick, S., and A. Hall, 2010: Observed Climate–Snowpack Relationships in California and their Implications for the Future. J. Climate, 23, 3446–3456, https://doi.org/10.1175/2010JCLI2903.1.
- California Department of Water Resources. (2016). Bulletin 118 Interim Update 2016. https://cawaterlibrary.net/wp-content/uploads/2017/05/Bulletin_118_Interim_Update_2016.pdf.
- Cayan, Daniel & Maurer, Edwin & Dettinger, Michael & Tyree, Mary & Hayhoe, Katharine. (2008). Climate Change Scenarios for the California Region. Climatic Change. 87. 21-42. 10.1007/s10584-007-9377-6.
- PRISM Climate Group. "Descriptions of PRISM Spatial Climate Datasets for the Conterminous United States." 2019. https://prism.oregonstate.edu/documents/PRISM_datasets.pdf.
- Gershunov, A., Shulgina, T., Ralph, F., Lavers, D., & Rutz, J. (2017). Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters, 44(15), 7900-7908. doi: 10.1002/2017gl074175
- Wilson, A., 2020. Ulmo. https://ulmo.readthedocs.io/_/downloads/en/v0.8.6/pdf/.

References

- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & amp; Engineering, 9(3), 90–95.
- Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272.
- GDAL/OGR contributors. (2020). GDAL/OGR Geospatial Data Abstraction software Library. Retrieved from https://gdal.org
- Waskom, Michael, and the seaborn development team. mwaskom/seaborn: v0.11.1 (December 2020). Zenodo. https://doi.org/10.5281/zenodo.883859
- California Department of Finance. Demographic Research Unit. Report P-1A: Total Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2019 Release). Sacramento: California. January 2020.

April 1 Snow Water Equivalent Trend

Ē

Volume Comparison

Ē

Tools

- Python
 - Ulmo
 - Matplotlib
 - Scipy

₽

Summary

		Basin	Mean	Negative Trend	Positive Trend	Mean Overall Trend (in/decade)
Precipitation	Precipitation Trend		Elevation			
Index	(in/decade)	All	2,326 m	78%	22%	-0.41
Northern Sierra	1.0	Sacramento River Basin	1,964 m	88%	12%	-0.70
San Joaquin	0.60					
Tulare	-0.10	San Joaquin River Basin	2,454 m	76%	24%	-0.26
		Tulare Lake Basin	2,739 m	61%	39%	-0.15

Source: CA DWR Phillips Station taken January 30, 2020

Snowpack

- Why study snowpack?
- Snow water equivalent depth of water contained within snowpack
- What's significant about April 1?

Climate

- Hot dry summers
- Mild wet winters

Climate

- Highly variable annual precipitation (Dettinger et al., 2011)
- Atmospheric rivers

Data

California Department of Water Resources

- California Cooperative Snow Surveys
- Precipitation indices

Table 1. April 1 Snow Survey Data				
Years of Record	Number of Snow Courses			
>30	199			
>60	166			
>90	36			

April 1 Snow Course Trends

Basin	Mean Elevation	Negative Trend	Positive Trend	Mean Negative Trend (in/decade)	Mean Positive Trend (in/decade)	Mean Overall Trend (in/decade)
All	2,326 m	78%	22%	-0.60	0.23	-0.41
Sacramento River Basin	1,964 m	88%	12%	-0.82	0.25	-0.70
San Joaquin River Basin	2,454 m	76%	24%	-0.42	0.26	-0.26
Tulare Lake Basin	2,739 m	61%	39%	-0.37	0.02	-0.15

Ę

April 1 SWE Trend with Elevation

Basin	Trend below 2,500 m (in/decade)
All	-0.59
Sacramento River Basin	-0.71
San Joaquin River Basin	-0.39
Tulare Lake Basin	-0.57

April 1 SWE Volume Change

Basin	Elevation Band (m)	Area (acres)	April 1 SWE Trend (in/year)	April 1 SWE Volume Change (acre-ft/decade)
	1,500 — 1,750	2,441,841	-0.11	-223,835
Sacramento	1,750 – 2,000	1,436,508	-0.07	-83,796
	2,000 – 2,250	601,042	-0.06	-30,052
	2,250 – 2,500	165,564	-0.07	-9,658
			Subtotal	-347,342
San Joaquin	2,000 – 2,250	379,501	-0.05	-15,813
San Joaquin	2,250 – 2,500	385,605	-0.02	-6,427
			Subtotal	-22,239
Tulare	2,000 – 2,250	336,431	-0.09	-25,232
	2,250 – 2,500	311,590	-0.03	-7,790
			Subtotal	-33,022
			Total	-402,603

Jan 18, 2013

Source: NOAA

San Joaquin River Basin Precipitation

San Joaquin 5 Station Index

Tulare Basin Precipitation

California Cooperative Snow Surveys

Number of Snow Courses
199
166
36

Source: CA DWR Phillips Station photo taken January 30, 2020

Major Watersheds

Sources Esrl, Marcar, Coolye, Earthstar Coogr USES, AsroCRID, ICN, and the CIS User Con

aphies, CNES/Afraus DS, USD

- Sacramento River
- San Joaquin River
- Tulare Basin

Watershed Elevation Curves

Watershed Area vs. Elevation 18 Sacramento 16 San Joaquin Tulare 2 0 2,500 2,750 500 750 1,250 1,500 1,750 2,000 2,250 3,000 3,250 3,500 3,750 4,000 4,500 250 1,000 4,250 4,750 0 Elevation (m)

April 1 Snow Water Equivalent Trend

San Joaquin River Basin April 1 Snow Water Equivalent Trend

Tulare Lake Basin April 1 Snow Water Equivalent Trend

Sacramento River Basin April 1 Snow Water Equivalent Trend

Sacramento River Runoff, April - July Runoff in percent of Water Year Runoff — Linear Regression (least squares) line showing historical trend — 3-year running average

Source: CA DWR

Consultants, Inc.

ater

edimentation echnology

Hydrology

Hydraulics

Reservoirs

Sediment Transport

Water Resources

Climate Change

River Forecasting

Land Management

Fish Passage

Photo: American Rivers

Western Hydrologics was created in 2018 by Jeff Meyer and Jared Emery who have over 45 years of combined experience working in Sierra Nevada Watersheds. We specialize in assisting our water supply and hydropower clients address complex environmental planning, resource management, economic, and operational challenges. Our mission is to develop creative, innovative and comprehensive solutions to these challenges. Our services include:

- Water Supply and Operations Planning
- Hydropower Operations Forecasting
- Hydro-Economic Modeling

- Water Rights
- Stream Gaging
- SB 88 Compliance

Mission

At DE, we think globally and act locally, empowering water managers to develop technical solutions that sustainably address the challenges of our rapidly changing world.

Vision

DE's vision is to develop thoughtful, proactive, and dynamic leaders that are ready to reimagine western water management with cutting-edge solutions.

Experience

Davids Engineering brings decades of experience with water use analyses and demand modeling in varied and complex landscapes and with diverse stakeholders and perspectives.

Project Team

Serving Stewards of Western Water Since 1993

Volume Comparison

